Bibliography

A list of the sources consulted during the development of this report is provided below.

  1. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. Rev. Antimicrob. Resist. (2016). doi:10.1016/j.jpha.2015.11.005
  2. Jansen, K. U., Knirsch, C. & Anderson, A. S. The role of vaccines in preventing bacterial antimicrobial resistance. Nat. Med. 24, 10–19 (2018).
  3. Laxminarayan, R. et al. Access to effective antimicrobials: a worldwide challenge. Lancet 387, 168–175 (2016).
  4. Thompson, A. et al. Safety of 13-valent pneumococcal conjugate vaccine in infants and children: Meta-analysis of 13 clinical trials in 9 countries. Vaccine (2013). doi:10.1016/j.vaccine.2013.08.025
  5. Davis, M. M. et al. Failure-to-success ratios, transition probabilities and phase lengths for prophylactic vaccines versus other pharmaceuticals in the development pipeline. Vaccine 29, 9414–9416 (2011).
  6. World Health Organisation. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. (2017).
  7. US Department of Health and Human Services. Centres for Disease Control and Prevention. Antibiotic resistance threats in the United States. (2013).
  8. Rappuoli, R., Bloom, D. E. & Black, S. Deploy vaccines to fight superbugs. Nature 552, 165–167 (2017).
  9. FDA. Guidance for Industry #213. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM299624.pdf (2013).
  10. Wanted: a reward for antibiotic development. Nat. Biotechnol. 36, 555–555 (2018).
  11. CDC – Centers for Disease Control and. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease–United States, 1998-2003. MMWR. Morb. Mortal. Wkly. Rep. (2005). doi:mm5436a1 [pii]
  12. Kingwell, K. Vaccines take a shot at antimicrobial resistance. Nat. Rev. Drug Discov. 17, 229 (2018).
  13. Kennedy, D. A. & Read, A. F. Why does drug resistance readily evolve but vaccine resistance does not? Proc. R. Soc. B Biol. Sci. (2017). doi:10.1098/rspb.2016.2562
  14. Avorn, J. The $2.6 Billion Pill — Methodologic and Policy Considerations. N. Engl. J. Med. 372, 1877–1879 (2015).
  15. Plotkin, S., Robinson, J. M., Cunningham, G., Iqbal, R. & Larsen, S. The complexity and cost of vaccine manufacturing – An overview. Vaccine 35, 4064–4071 (2017).
  16. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet (2013). doi:10.1016/S0140-6736(13)60844-2
  17. Miller, M. et al. The MAL-ED study: A multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of . Clin. Infect. Dis. (2014). doi:10.1093/cid/ciu653
  18. Havelaar, A. H. et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLOS Med. 12, e1001923 (2015).
  19. Hay, S. I. et al. Measuring and mapping the global burden of antimicrobial resistance. BMC Med. 16, 78 (2018).
  20. Lipsitch, M. & Siber, G. R. How can vaccines contribute to solving the antimicrobial resistance problem? MBio 7, (2016).
  21. Sherman, R. E. et al. Real-World Evidence — What Is It and What Can It Tell Us? N. Engl. J. Med. 375, 2293–2297 (2016).
  22. Bruxvoort, K., Sy, L. S., Luo, Y. & Tseng, H. F. Real-World Evidence for Regulatory Decisions: Concomitant Administration of Zoster Vaccine Live and Pneumococcal Polysaccharide Vaccine. Am. J. Epidemiol. (2018). doi:10.1093/aje/kwy076
  23. Adegoke, A. A., Mvuyo, T. & Okoh, A. I. Ubiquitous Acinetobacter species as beneficial commensals but gradually being emboldened with antibiotic resistance genes. J. Basic Microbiol. 52, 620–7 (2012).
  24. Acinetobacter infection: Epidemiology, microbiology, pathogenesis, clinical features, and diagnosis – UpToDate. Available at: https://www.uptodate.com/contents/acinetobacter-infection-epidemiology-microbiology-pathogenesis-clinical-features-and-diagnosis. (Accessed: 30th July 2018)
  25. Clinical presentation and diagnostic evaluation of ventilator-associated pneumonia – UpToDate. Available at: https://www.uptodate.com/contents/clinical-presentation-and-diagnostic-evaluation-of-ventilator-associated-pneumonia. (Accessed: 31st July 2018)
  26. Acute complicated urinary tract infection (including pyelonephritis) in adults – UpToDate. Available at: https://www.uptodate.com/contents/acute-complicated-urinary-tract-infection-including-pyelonephritis-in-adults. (Accessed: 30th July 2018)
  27. Yakupogullari, Y. et al. Is airborne transmission of Acinetobacter baumannii possible: A prospective molecular epidemiologic study in a tertiary care hospital. Am. J. Infect. Control 44, 1595–1599 (2016).
  28. Expert interview.
  29. Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–82 (2008).
  30. Serota, D. P., Sexton, M. E., Kraft, C. S. & Palacio, F. Severe Community-Acquired Pneumonia due to Acinetobacter baumannii in North America: Case Report and Review of the Literature. Open forum Infect. Dis. 5, ofy044 (2018).
  31. IHME data.
  32. WHO.
  33. Gadsby, N. J. et al. Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia. Clin. Infect. Dis. 62, 817–823 (2016).
  34. Simonsen, K. A., Anderson-Berry, A. L., Delair, S. F. & Davies, H. D. Early-Onset Neonatal Sepsis. Clin. Microbiol. Rev. 27, 21–47 (2014).
  35. Tsai, W.-C. et al. Clinical characteristics, pathogens implicated and therapeutic outcomes of mixed infection in adult bacterial meningitis. Kaohsiung J. Med. Sci. 28, 531–537 (2012).
  36. Custovic, A. et al. Epidemiological Monitoring of Nosocomial Infections Caused by Acinetobacter Baumannii. Med. Arch. 68, 402 (2014).
  37. Marais, E., de Jong, G., Ferraz, V., Maloba, B. & Dusé, A. G. Interhospital transfer of pan-resistant Acinetobacter strains in Johannesburg, South Africa. Am. J. Infect. Control 32, 278–281 (2004).
  38. Saleem, A. F., Ahmed, I., Mir, F., Ali, S. R. & Zaidi, A. K. Pan-resistant Acinetobacter infection in neonates in Karachi, Pakistan. J. Infect. Dev. Ctries. 4, 30–7 (2009).
  39. Oikonomou, O. et al. Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: mechanisms of resistance, molecular identification and epidemiological data. BMC Infect. Dis. 15, 559 (2015).
  40. Evaluate Pharma.
  41. PharmaProjects.
  42. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/. (Accessed: 24th July 2018)
  43. Qiu, H. et al. Host resistance to intranasal Acinetobacter baumannii reinfection in mice. Pathog. Dis. 74, ftw048 (2016).
  44. Ahmad, T. A., Tawfik, D. M., Sheweita, S. A., Haroun, M. & El-sayed, L. H. Trials in Vaccinology Development of immunization trials against Acinetobacter baumannii. Trials Vaccinol. 5, 53–60 (2016).
  45. Chiang, M. et al. Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology. Hum. Vaccin. Immunother. 5515, (2015).
  46. Harris, G., KuoLee, R., Xu, H. H. & Chen, W. Mouse Models of Acinetobacter baumanniiInfection. Curr. Protoc. Microbiol. 46, 6G.3.1-6G.3.23 (2017).
  47. Demirjian, A. & Levy, O. Safety and efficacy of neonatal vaccination. Eur. J. Immunol. 39, 36–46 (2009).
  48. Morris, M. C. & Surendran, N. Neonatal Vaccination: Challenges and Intervention Strategies. Neonatology 109, 161–9 (2016).
  49. Warfel, J. M., Papin, J. F., Wolf, R. F., Zimmerman, L. I. & Merkel, T. J. Maternal and neonatal vaccination protects newborn baboons from pertussis infection. J. Infect. Dis. 210, 604–10 (2014).
  50. Ginsburg, A. S., Meulen, A. S.-T. & Klugman, K. P. Prevention of neonatal pneumonia and sepsis via maternal immunisation. Lancet. Glob. Heal. 2, e679-80 (2014).
  51. Can I have vaccinations when I’m pregnant? – NHS.UK. Available at: https://www.nhs.uk/conditions/pregnancy-and-baby/vaccinations-pregnant/. (Accessed: 6th August 2018)
  52. Perez, F. & Bonomo, R. A. Vaccines for Acinetobacter baumannii: thinking "out of the box" Vaccine 32, 2537–9 (2014).
  53. Nielsen, T. B. et al. Monoclonal Antibody Protects Against Acinetobacter baumannii Infection by Enhancing Bacterial Clearance and Evading Sepsis. J. Infect. Dis. 216, 489–501 (2017).
  54. LaVergne, S. et al. Phage Therapy for a Multidrug-Resistant Acinetobacter baumannii Craniectomy Site Infection. Open Forum Infect. Dis. 5, (2018).
  55. Reindel, R. & Fiore, C. R. Phage Therapy: Considerations and Challenges for Development. Clin. Infect. Dis. 64, 1589–1590 (2017).
  56. Enne, V. I., Personne, Y., Grgic, L., Gant, V. & Zumla, A. Aetiology of hospital-acquired pneumonia and trends in antimicrobial resistance. Curr. Opin. Pulm. Med. 20, 252–8 (2014).
  57. Helal, S., El Anany, M., Ghaith, D. & Rabeea, S. The Role of MDR-Acinetobacter baumannii in Orthopedic Surgical Site Infections. Surg. Infect. (Larchmt). 16, 518–22 (2015).
  58. Aiken, A. M. et al. Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet 378, 2021–2027 (2011).
  59. Clinical manifestations, diagnosis, and treatment of Campylobacter infection – UpToDate. Available at: https://www.uptodate.com/contents/clinical-manifestations-diagnosis-and-treatment-of-campylobacter-infection. (Accessed: 2nd August 2018)
  60. Clinical manifestations, diagnosis, and treatment of Campylobacter infection – UpToDate.
  61. The Bill and Melinda Gates Foundation. Campylobacter spp. Transmission Dynamics in Low- and Middle-Income Countries. (2018). Available at: https://gcgh.grandchallenges.org/challenge/campylobacter-spp-transmission-dynamics-low-and-middle-income-countries. (Accessed: 6th August 2018)
  62. Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M. & Man, S. M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 28, 687–720 (2015).
  63. Manfredi, R., Calza, L. & Chiodo, F. Enteric and disseminated campylobacter species infection during HIV disease: a persisting but significantly modified association in the HAART era. Am. J. Gastroenterol. 97, 510–511 (2002).
  64. IHME.
  65. Lecuit, M. et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N. Engl. J. Med. 350, 239–48 (2004).
  66. Baginsky, L. A. et al. Campylobacter jejuni Infection in Intestinal Lymphoma: A Strong Association with Immunoproliferative Small Intestinal Disease. Blood 104, (2004).
  67. Guerrant, R. L., DeBoer, M. D., Moore, S. R., Scharf, R. J. & Lima, A. A. M. The impoverished gut–a triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 10, 220–9 (2013).
  68. MAL-ED. Relationship between growth and illness, enteropathogens and dietary intakes in the first 2 years of life: findings from the MAL-ED birth cohort study. BMJ Glob. Heal. 2, e000370 (2017).
  69. Richard, S. A. et al. Catch-up growth occurs after diarrhea in early childhood. J. Nutr. 144, 965–71 (2014).
  70. Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M. & Man, S. M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 28, 687–720 (2015).
  71. Riddle, M. S. & Guerry, P. Status of vaccine research and development for Campylobacter jejuni ଝ. Vaccine 34, 2903–2906 (2016).
  72. Bolick, D. T. et al. The Critical Role of Zinc in a New Murine Model of Enterotoxigenic E. coli (ETEC) Diarrhea. Infect. Immun. 86, e00183-18 (2018).
  73. WHO. The global view of campylobacteriosis Report of an expert consultation. (2014).
  74. Kirk, M. D. et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLOS Med. 12, e1001921 (2015).
  75. Gordon, M. A. Invasive nontyphoidal Salmonella disease: epidemiology, pathogenesis and diagnosis. Curr. Opin. Infect. Dis. 24, 484–9 (2011).
  76. Facciolà, A. et al. Campylobacter: from microbiology to prevention. J. Prev. Med. Hyg. 58, E79–E92 (2017).
  77. Kobierecka, P. A. et al. Chicken Anti-Campylobacter Vaccine – Comparison of Various Carriers and Routes of Immunization. Front. Microbiol. 7, 740 (2016).
  78. Gregorio, G. V, Gonzales, M. L. M., Dans, L. F. & Martinez, E. G. Polymer-based oral rehydration solution for treating acute watery diarrhoea. Cochrane Database Syst. Rev. 12, CD006519 (2016).
  79. Lazzerini, M. & Wanzira, H. Oral zinc for treating diarrhoea in children. Cochrane Database Syst. Rev. 12, CD005436 (2016).
  80. Bolick, D. T. et al. The Critical Role of Zinc in a New Murine Model of Enterotoxigenic E. coli (ETEC) Diarrhea. Infect. Immun. 86, e00183-18 (2018).
  81. Giallourou, N. et al. A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathog. 14, e1007083 (2018).
  82. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).
  83. Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2, 26050 (2015).
  84. Infections due to Serratia species – UpToDate. Available at: https://www.uptodate.com/contents/infections-due-to-serratia-species. (Accessed: 1st August 2018)
  85. Davin-Regli, A. & Pagès, J.-M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 6, 392 (2015).
  86. Schaffer, J. N. & Pearson, M. M. Proteus mirabilis and Urinary Tract Infections. Microbiol. Spectr. 3, (2015).
  87. Wie, S.-H. Clinical significance of Providencia bacteremia or bacteriuria. Korean J. Intern. Med. 30, 167–9 (2015).
  88. Singla, N., Kaistha, N., Gulati, N. & Chander, J. Morganella morganii could be an important Intensive Care Unit pathogen. Indian J. Crit. Care Med. 14, 154–5 (2010).
  89. Epidemiology, pathogenesis, microbiology, and diagnosis of hospital-acquired and ventilator-associated pneumonia in adults – UpToDate. Available at: https://www.uptodate.com/contents/epidemiology-pathogenesis-microbiology-and-diagnosis-of-hospital-acquired-and-ventilator-associated-pneumonia-in-adults. (Accessed: 1st August 2018)
  90. Complications of abdominal surgical incisions – UpToDate. Available at: https://www.uptodate.com/contents/complications-of-abdominal-surgical-incisions. (Accessed: 1st August 2018)
  91. Clinical manifestations and evaluation of adults with suspected native valve endocarditis – UpToDate. Available at: https://www.uptodate.com/contents/clinical-manifestations-and-evaluation-of-adults-with-suspected-native-valve-endocarditis. (Accessed: 1st August 2018)
  92. Clinical features and diagnosis of acute bacterial meningitis in adults – UpToDate. Available at: https://www.uptodate.com/contents/clinical-features-and-diagnosis-of-acute-bacterial-meningitis-in-adults. (Accessed: 1st August 2018)
  93. Septic arthritis in adults – UpToDate. Available at: https://www.uptodate.com/contents/septic-arthritis-in-adults. (Accessed: 1st August 2018)
  94. Manning, M. Lou, Archibald, L. K., Bell, L. M., Banerjee, S. N. & Jarvis, W. R. Serratia marcescens transmission in a pediatric intensive care unit: A multifactorial occurrence. Am. J. Infect. Control 29, 115–119 (2001).
  95. Jha, P. et al. Transmission of Enterobacter aerogenes septicemia in healthcare workers. Springerplus 5, 1397 (2016).
  96. Treatment of hospital-acquired and ventilator-associated pneumonia in adults – UpToDate. Available at: https://www.uptodate.com/contents/treatment-of-hospital-acquired-and-ventilator-associated-pneumonia-in-adults. (Accessed: 17th July 2018)
  97. Overview of carbapenemase-producing gram-negative bacilli – UpToDate. Available at: https://www.uptodate.com/contents/overview-of-carbapenemase-producing-gram-negative-bacilli. (Accessed: 1st August 2018)
  98. Brumbaugh, A. R. & Mobley, H. L. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev. Vaccines 11, 663–676 (2012).
  99. Ahmad, T. A. et al. Development of immunization trials against Klebsiella pneumoniae. Vaccine 30, 2411–2420 (2012).
  100. Nielubowicz, G. R., Smith, S. N. & Mobley, H. L. T. Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect. Immun. 76, 4222–31 (2008).
  101. O’Hara, C. M., Brenner, F. W. & Miller, J. M. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 13, 534–46 (2000).
  102. Aucken, H. M., Wilkinson, S. G. & Pitt, T. L. Identification of capsular antigens in Serratia marcescens. J. Clin. Microbiol. 35, 59–63 (1997).
  103. Ovchinnikova, O. G., Rozalski, A., Liu, B. & Knirel, Y. A. O-antigens of bacteria of the genus Providencia: Structure, serology, genetics, and biosynthesis. Biochem. 78, 798–817 (2013).
  104. Asad, Y., Ahmad, S., Rungrotmongkol, T., Ranaghan, K. E. & Azam, S. S. Immuno-informatics driven proteome-wide investigation revealed novel peptide-based vaccine targets against emerging multiple drug resistant Providencia stuartii. J. Mol. Graph. Model. 80, 238–250 (2018).
  105. Gaston, M. A., Strickland, M. A., Ayling-Smith, B. A. & Pitt, T. L. Epidemiological typing of Enterobacter aerogenes. J. Clin. Microbiol. 27, 564–5 (1989).
  106. Vörös, S. & Senior, B. W. New O antigens of Morganella morganii and the relationships between haemolysin production. O antigens and morganocin types of strains. Acta Microbiol. Hung. 37, 341–9 (1990).
  107. Chen, Y.-T. et al. Whole-genome sequencing and identification of Morganella morganii KT pathogenicity-related genes. BMC Genomics 13, S4 (2012).
  108. Haouzi, P. Murine models in critical care research. Crit. Care Med. 39, 2290–2293 (2011).
  109. Witteveen, E. et al. Assessment of intensive care unit-acquired weakness in young and old mice: An E. coli septic peritonitis model. Muscle Nerve 53, 127–33 (2016).
  110. Conover, M. S., Flores-Mireles, A. L., Hibbing, M. E., Dodson, K. & Hultgren, S. J. Establishment and Characterization of UTI and CAUTI in a Mouse Model. J. Vis. Exp. e52892 (2015). doi:10.3791/52892
  111. Melo, L. D. R. et al. Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections. Front. Microbiol. 7, 1024 (2016).
  112. Fei, N. & Zhao, L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7, 880–884 (2013).
  113. Henry, J. N., Gelfand, E. W. & Hinchey, E. J. Gram-negative endotoxin shock due to Serratia marcescens. Can. Med. Assoc. J. 102, 45–8 (1970).
  114. Hidron, A. I. et al. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 29, 996–1011 (2008).
  115. Murdoch, D. R. et al. Clinical Presentation, Etiology, and Outcome of Infective Endocarditis in the 21st Century. Arch. Intern. Med. 169, 463 (2009).
  116. Crank, C. & O’Driscoll, T. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 8, 217 (2015).
  117. Guzman Prieto, A. M. et al. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front. Microbiol. 7, 788 (2016).
  118. Acute simple cystitis in women – UpToDate. Available at: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2018.3627. (Accessed: 18th July 2018)
  119. Antimicrobial therapy of native valve endocarditis – UpToDate. Available at: https://www.uptodate.com/contents/antimicrobial-therapy-of-native-valve-endocarditis. (Accessed: 18th July 2018)
  120. Treatment of enterococcal infections – UpToDate. Available at: https://www.uptodate.com/contents/treatment-of-enterococcal-infections. (Accessed: 18th July 2018)
  121. Balli, E. P., Venetis, C. A. & Miyakis, S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob. Agents Chemother. 58, 734–9 (2014).
  122. Sava, I. G., Heikens, E. & Huebner, J. Pathogenesis and immunity in enterococcal infections. Clin Microbiol Infect 16, 533–540 (2010).
  123. Kodali, S. et al. A Vaccine Approach for the Prevention of Infections by Multidrug-resistant Enterococcus faecium. J. Biol. Chem. 290, 19512–19526 (2015).
  124. MODULE 2 – Immunizing the immunocompromised – WHO Vaccine Safety Basics. Available at: http://vaccine-safety-training.org/immunizing-the-immunocompromised.html. (Accessed: 27th July 2018)
  125. Dalhoff, A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip. Perspect. Infect. Dis. 2012, 976273 (2012).
  126. Cagnacci, S., Gualco, L., Debbia, E., Schito, G. C. & Marchese, A. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J. Clin. Microbiol. 46, 2605–12 (2008).
  127. Seidman, J. C. et al. Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic Escherichia coli from Young Tanzanian Children. Front. Microbiol. 7, 1420 (2016).
  128. Zhang, S., Wu, Q., Zhang, J., Lai, Z. & Zhu, X. Prevalence, genetic diversity, and antibiotic resistance of enterotoxigenic Escherichia coli in retail ready-to-eat foods in China. Food Control 68, 236–243 (2016).
  129. López-Gigosos, R. et al. Effectiveness of the WC/rBS oral cholera vaccine in the prevention of traveler’s diarrhea. Hum. Vaccin. Immunother. 9, 692–698 (2013).
  130. FAQs | DUKORAL® – Oral Vaccine for ETEC Diarrhea. Available at: https://www.dukoralcanada.com/faqs. (Accessed: 25th July 2018)
  131. Pathogenic Escherichia coli associated with diarrhea – UpToDate. (2018). Available at: https://www.uptodate.com/contents/pathogenic-escherichia-coli-associated-with-diarrhea. (Accessed: 24th July 2018)
  132. CDC – Centers for Disease Control and. Questions and Answers | E.coli. (2018). Available at: https://www.cdc.gov/ecoli/general/index.html. (Accessed: 24th July 2018)
  133. Svennerholm, A.-M. & Tobias, J. Vaccines against enterotoxigenic Escherichia coli. Expert Rev. Vaccines 7, 795–804 (2014).
  134. Qadri, F., Svennerholm, A.-M., Faruque, A. S. G. & Sack, R. B. Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin. Microbiol. Rev. 18, 465–83 (2005).
  135. Approach to the adult with acute diarrhea in resource-rich settings – UpToDate. (2018). Available at: https://www.uptodate.com/contents/approach-to-the-adult-with-acute-diarrhea-in-resource-rich-settings. (Accessed: 24th July 2018)
  136. Urban, C., Tiruvury, H., Mariano, N., Colon-Urban, R. & Rahal, J. J. Polymyxin-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. (2011). doi:10.1128/AAC.01088-10
  137. Adefisoye, M. A. & Okoh, A. I. Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa. Microbiologyopen (2016). doi:10.1002/mbo3.319
  138. Konaté, A. et al. Epidemiology and antibiotic resistance phenotypes of diarrheagenic Escherichia coli responsible for infantile gastroenteritis in Ouagadougou, Burkina Faso. Eur. J. Microbiol. Immunol. 7, 168–175 (2017).
  139. Travelers’ diarrhea: Clinical manifestations, diagnosis, and treatment – UpToDate. (2018). Available at: https://www.uptodate.com/contents/travelers-diarrhea-clinical-manifestations-diagnosis-and-treatment. (Accessed: 24th July 2018)
  140. Travelers’ diarrhea: Microbiology, epidemiology, and prevention – UpToDate. Available at: https://www.uptodate.com/contents/travelers-diarrhea-microbiology-epidemiology-and-prevention. (Accessed: 7th August 2018)
  141. Bourgeois, A. L., Wierzba, T. F. & Walker, R. I. Status of vaccine research and development for enterotoxigenic Escherichia coli ଝ. Vaccine 34, 2880–2886 (2016).
  142. Wolf, M. K. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin. Microbiol. Rev. 10, 569–84 (1997).
  143. Lundgren, A. et al. Safety and immunogenicity of an improved oral inactivated multivalent enterotoxigenic Escherichia coli (ETEC) vaccine administered alone and together with dmLT adjuvant in a double-blind, randomized, placebo-controlled Phase I study. Vaccine 32, 7077–7084 (2014).
  144. Klemm, P. Fimbrial adhesions of Escherichia coli. Rev. Infect. Dis. 7, 321–40
  145. Kaslow, D. C. Product Development for Vaccines Advisory Committee (PDVAC): Vaccine development highlights from 2016/17. (2017).
  146. PATH. The Case for Investment in Enterotoxigenic Escherichia coli Vaccines. (2011).
  147. Burki, T. Typhoid conjugate vaccine gets WHO prequalification. Lancet Infect. Dis. 18, 258 (2018).
  148. Feasey, N. A. & Levine, M. M. Typhoid vaccine development with a human challenge model. Lancet 390, 2419–2421 (2017).
  149. Xu, Z. & Moyle, P. M. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands. Bioconjug. Chem. 29, 572–586 (2018).
  150. Hosangadi, D., Smith, P. G., Kaslow, D. C. & Giersing, B. K. WHO consultation on ETEC and Shigella burden of disease, Geneva, 6–7th April 2017: Meeting report. Vaccine (2018). doi:10.1016/J.VACCINE.2017.10.011
  151. Méndez, Y. et al. Multicomponent polysaccharide-protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chem. Sci. 9, 2581–2588 (2018).
  152. Huttner, A. et al. Effect of 5-Day Nitrofurantoin vs Single-Dose Fosfomycin on Clinical Resolution of Uncomplicated Lower Urinary Tract Infection in Women. JAMA 319, 1781 (2018).
  153. Terlizzi, M. E., Gribaudo, G. & Maffei, M. E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front. Microbiol. 8, 1566 (2017).
  154. Dale, A. P. & Woodford, N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J. Infect. 71, 615–626 (2015).
  155. Marrs, C. F., Zhang, L. & Foxman, B. Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol. Lett. 252, 183–90 (2005).
  156. Salvatore, S. et al. Urinary tract infections in women. Eur. J. Obstet. Gynecol. Reprod. Biol. 156, 131–136 (2011).
  157. Foxman, B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North Am. 28, 1–13 (2014).
  158. Nguyen-Van-Tam, S. E., Nguyen-Van-Tam, J. S., Myint, S. & Pearson, J. C. Risk factors for hospital-acquired urinary tract infection in a large English teaching hospital: a case-control study. Infection 27, 192–7
  159. Stamm, W. E. & Norrby, S. R. Urinary Tract Infections: Disease Panorama and Challenges. J. Infect. Dis. 183, S1–S4 (2001).
  160. Colpan, A. et al. Escherichia coli Sequence Type 131 (ST131) Subclone H30 as an Emergent Multidrug-Resistant Pathogen Among US Veterans. Clin. Infect. Dis. 57, 1256–1265 (2013).
  161. Huttner, A. et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017).
  162. Dobbelsteen, G. P. J. M. Van Den et al. Immunogenicity and safety of a tetravalent E . coli O-antigen bioconjugate vaccine in animal models. Vaccine 34, 4152–4160 (2016).
  163. Inoue, M. et al. Safety, tolerability and immunogenicity of the ExPEC4V (JNJ-63871860) vaccine for prevention of invasive extraintestinal pathogenic Escherichia coli disease: A phase 1, randomized, double-blind, placebo-controlled study in healthy Japanese participants. Hum. Vaccin. Immunother. 1–8 (2018). doi:10.1080/21645515.2018.1474316
  164. Al-Badr, A. & Al-Shaikh, G. Recurrent Urinary Tract Infections Management in Women: A review. Sultan Qaboos Univ. Med. J. 13, 359–67 (2013).
  165. Sivick, K. E. & Mobley, H. L. T. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect. Immun. 78, 568–85 (2010).
  166. Hannan, T. J., Mysorekar, I. U., Hung, C. S., Isaacson-Schmid, M. L. & Hultgren, S. J. Early Severe Inflammatory Responses to Uropathogenic E. coli Predispose to Chronic and Recurrent Urinary Tract Infection. PLoS Pathog. 6, e1001042 (2010).
  167. Wiles, T. J., Kulesus, R. R. & Mulvey, M. A. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol. 85, 11–9 (2008).
  168. Poolman, J. T. & Wacker, M. Extraintestinal Pathogenic Escherichia coli , a Common Human Pathogen: Challenges for Vaccine Development and Progress in the Field. J. Infect. Dis. 213, 6–13 (2016).
  169. Hung, C.-S., Dodson, K. W. & Hultgren, S. J. A murine model of urinary tract infection. Nat. Protoc. 4, 1230–1243 (2009).
  170. Hopkins, W. J. & Uehling, D. T. Vaccine development for the prevention of urinary tract infections. Curr. Infect. Dis. Rep. 4, 509–513 (2002).
  171. Evans, T. G., Schrager, L. & Thole, J. Status of vaccine research and development of vaccines for tuberculosisVaccine 34, 2911–2914 (2016).
  172. Fiuk, J. V, Holland, B. C., Dynda, D. I. & Alanee, S. R. Antibiotics prophylaxis before prostate biopsy in practice: Review of online clinical guidelines. Urol. Ann. 7, 279–80 (2015).
  173. Wagenlehner, F., Wullt, B., Ballarini, S., Zingg, D. & Naber, K. G. Social and economic burden of recurrent urinary tract infections and quality of life: a patient web-based study (GESPRIT). Expert Rev. Pharmacoecon. Outcomes Res. 18, 107–117 (2018).
  174. Nicolle, L. E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control 3, 23 (2014).
  175. Young, V. B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356, j831 (2017).
  176. Clapp, M. et al. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 7, 987 (2017).
  177. Hays, M. P., Ericsson, A. C., Yang, Y. & Hardwidge, P. R. Vaccinating with conserved Escherichia coli antigens does not alter the mouse intestinal microbiome. BMC Res. Notes 9, 401 (2016).
  178. ECDC. ECDC Factsheet about Invasive Haemophilus influenzae disease. Available at: https://ecdc.europa.eu/en/invasive-haemophilus-influenzae-disease/facts. (Accessed: 2nd August 2018)
  179. Rubach, M. P. et al. Increasing incidence of invasive Haemophilus influenzae disease in adults, Utah, USA. Emerg. Infect. Dis. 17, 1645–50 (2011).
  180. Van Eldere, J., Slack, M. P. E., Ladhani, S. & Cripps, A. W. Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet. Infect. Dis. 14, 1281–92 (2014).
  181. WHO Factsheet on immunisation coverage. Available at: http://www.who.int/news-room/fact-sheets/detail/immunization-coverage. (Accessed: 2nd August 2018)
  182. Jackson, C., Mann, A., Mangtani, P. & Fine, P. Effectiveness of Haemophilus influenzae Type b Vaccines Administered According to Various Schedules. Pediatr. Infect. Dis. J. 32, 1261–1269 (2013).
  183. Giufrè, M. et al. Ten years of Hib vaccination in Italy: Prevalence of non-encapsulated Haemophilus influenzae among invasive isolates and the possible impact on antibiotic resistance. Vaccine 29, 3857–3862 (2011).
  184. Epidemiology, clinical manifestations, and treatment of Haemophilus influenzae – UpToDate. Available at: https://www.uptodate.com/contents/epidemiology-clinical-manifestations-and-treatment-of-haemophilus-influenzae. (Accessed: 2nd August 2018)
  185. King, P. Haemophilus influenzae and the lung (Haemophilus and the lung). Clin. Transl. Med. 1, 10 (2012).
  186. Langereis, J. D. & de Jonge, M. I. Invasive Disease Caused by Nontypeable Haemophilus influenzae. Emerg. Infect. Dis. 21, 1711–8 (2015).
  187. WHO. WHO Disease and epidemiology – Haemophilus influenzae type B. Available at: http://www.emro.who.int/health-topics/haemophilus-influenzae-type-b/disease-and-epidemiology.html. (Accessed: 2nd August 2018)
  188. Pneumonia Symptoms – WebMD. Available at: https://www.webmd.com/lung/understanding-pneumonia-symptoms#1. (Accessed: 2nd August 2018)
  189. CDC – Centers for Disease Control and. CDC Haemophilus influenzae – Types of Infection and Causes. Available at: https://www.cdc.gov/hi-disease/about/types-infection.html. (Accessed: 2nd August 2018)
  190. Haemophilus influenzae. Available at: https://www.infectiousdiseaseadvisor.com/infectious-diseases/haemophilus-influenzae/article/609450/. (Accessed: 2nd August 2018)
  191. WHO. The Immunological Basis for Immunization Series: Module 9: Haemophilus influenzae type b. (2007).
  192. CDC – Centers for Disease Control and. CDC Haemophilus influenzae – Causes and Transmission. Available at: https://www.cdc.gov/hi-disease/about/causes-transmission.html. (Accessed: 2nd August 2018)
  193. Allali, S., Chalumeau, M., Launay, O., Ballas, S. K. & de Montalembert, M. Conjugate Haemophilus influenzae type b vaccines for sickle cell disease. Cochrane Database Syst. Rev. (2016). doi:10.1002/14651858.CD011199.pub2
  194. Meningitis Research Foundation: Hib (Haemophilus Influenzae Type B) vaccine.
  195. Adegbola, R. A. et al. Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet 366, 144–150 (2005).
  196. Treatment of bacterial meningitis caused by specific pathogens in adults – UpToDate. Available at: https://www.uptodate.com/contents/treatment-of-bacterial-meningitis-caused-by-specific-pathogens-in-adults. (Accessed: 2nd August 2018)
  197. Treatment of community-acquired pneumonia in adults in the outpatient setting – UpToDate. Available at: https://www.uptodate.com/contents/treatment-of-community-acquired-pneumonia-in-adults-in-the-outpatient-setting. (Accessed: 2nd August 2018)
  198. Safety, Reactogenicity and Immunogenicity of GlaxoSmithKline (GSK) Biologicals’ Non-typeable Haemophilus Influenzae (NTHI) Vaccine – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT01657526. (Accessed: 6th August 2018)
  199. Siegrist, C. A. Neonatal and early life vaccinology. Vaccine 19, 3331–46 (2001).
  200. Kelly, D. F., Moxon, E. R. & Pollard, A. J. Haemophilus influenzae type b conjugate vaccines. Immunology 113, 163–74 (2004).
  201. Hamidi, A., Verdijk, P. & Kreeftenberg, H. Preclinical evaluation of a Haemophilus influenzae type b conjugate vaccine process intended for technology transfer. Hum. Vaccin. Immunother. 10, 2691–6 (2014).
  202. Akeda, Y. et al. Comparison of serum bactericidal and antibody titers induced by two Haemophilus influenzae type b conjugate vaccines: A phase III randomized double-blind study. Vaccine 36, 1528–1532 (2018).
  203. WHO. WHO 27th September 2013 Weekly epidemiology record. Position paper on Hib vaccination.
  204. WHO. The Vaccines Monovalent Hib vaccine Factsheet. (2012).
  205. CDC – Centers for Disease Control and. CDC Haemophilus Influenza Type B (Hib) Vaccine Safety. Available at: https://www.cdc.gov/vaccinesafety/vaccines/hib-vaccine.html. (Accessed: 2nd August 2018)
  206. Infanrix IPV – Summary of Product Characteristics (SmPC) – (eMC). Available at: https://www.medicines.org.uk/emc/product/5535/smpc#STORAGE. (Accessed: 2nd August 2018)
  207. Howie, S. R. C. Global Hib vaccination: reasons to cheer and fear. Lancet Glob. Heal. 4, e142–e143 (2016).
  208. Gavi support for the Haemophilus influenzae type b vaccine. Available at: https://www.gavi.org/support/nvs/hib/. (Accessed: 2nd August 2018)
  209. Yeh, S. Prevention of Haemophilus influenzae type b infection. Available at: https://www.uptodate.com/contents/prevention-of-haemophilus-influenzae-type-b-infection?search=hib coverage&source=search_result&selectedTitle=6~150&usage_type=default&display_rank=6. (Accessed: 2nd August 2018)
  210. Plotkin, S. A., Orenstein, W. A. & Offit, P. A. Plotkin’s vaccines. (2017).
  211. Wan Sai Cheong, J. et al. Trends in the epidemiology of invasive Haemophilus influenzae disease in Queensland, Australia from 2000 to 2013: what is the impact of an increase in invasive non-typable H. influenzae (NTHi)? Epidemiol. Infect. 143, 2993–3000 (2015).
  212. Ladhani, S. N., Ramsay, M. & Slack, M. P. E. The Impact of Haemophilus influenzae Serotype B Resurgence on the Epidemiology of Childhood Invasive Haemophilus influenzae Disease in England and Wales. Pediatr. Infect. Dis. J. 30, 893–895 (2011).
  213. Whittaker, R. et al. Epidemiology of Invasive Haemophilus Influenzae Disease, Europe, 2007–2014. Emerg. Infect. Dis. 23, 396–404 (2017).
  214. Hooi, J. K. Y. et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 153, 420–429 (2017).
  215. Testerman, T. L. & Morris, J. Beyond the stomach: an updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J. Gastroenterol. 20, 12781–808 (2014).
  216. Salih, B. A. Helicobacter pylori infection in developing countries: the burden for how long? Saudi J. Gastroenterol. 15, 201–7 (2009).
  217. H. Pylori Transmission and Spread of Infection | Mel and Enid Zuckerman College of Public Health. Available at: https://publichealth.arizona.edu/outreach/health-literacy-awareness/hpylori/transmission. (Accessed: 31st July 2018)
  218. Lahner, E., Carabotti, M. & Annibale, B. Treatment of Helicobacter pylori infection in atrophic gastritis. World J. Gastroenterol. 24, 2373–2380 (2018).
  219. Ford, A., Delaney, B., Forman, D. & Moayyedi, P. Eradication therapy for peptic ulcer disease in Helicobacter pylori positive patients. in Cochrane Database of Systematic Reviews (ed. Ford, A.) CD003840 (John Wiley & Sons, Ltd, 2003). doi:10.1002/14651858.CD003840.pub2
  220. Helicobacter pylori Eradication as a Strategy for Preventing Gastric Cancer. (2013).
  221. Cardaropoli, S., Rolfo, A. & Todros, T. Helicobacter pylori and pregnancy-related disorders. World J. Gastroenterol. 20, 654–64 (2014).
  222. Li, L. et al. Helicobacter pylori Infection Is Associated with an Increased Risk of Hyperemesis Gravidarum: A Meta-Analysis. Gastroenterol. Res. Pract. 2015, 278905 (2015).
  223. Zamani, M. et al. Systematic review with meta-analysis: the worldwide prevalence of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 47, 868–876 (2018).
  224. Grooten, I. J. et al. Helicobacter pylori infection: a predictor of vomiting severity in pregnancy and adverse birth outcome. Am. J. Obstet. Gynecol. 216, 512.e1-512.e9 (2017).
  225. Crowe, S. Treatment regimens for Helicobacter pylori – UpToDate. Available at: https://www.uptodate.com/contents/treatment-regimens-for-helicobacter-pylori. (Accessed: 30th July 2018)
  226. Chey, W. D., Leontiadis, G. I., Howden, C. W. & Moss, S. F. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am. J. Gastroenterol. 112, 212–239 (2017).
  227. Thung, I. et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment. Pharmacol. Ther. 43, 514–533 (2016).
  228. Nayar, D. S. Current eradication rate of Helicobacter pylori with clarithromycin-based triple therapy in a gastroenterology practice in the New York metropolitan area. Infect. Drug Resist. 11, 205–211 (2018).
  229. Malaty, H. M. et al. Natural History of Helicobacter pylori Infection in Childhood: 12‐Year Follow‐up Cohort Study in a Biracial Community. Clin. Infect. Dis. 28, 279–282 (1999).
  230. Sutton, P. & Boag, J. M. Status of vaccine research and development for Helicobacter pylori. Vaccine 1–5 (2018). doi:10.1016/j.vaccine.2018.01.001
  231. Aebischer, T. et al. Correlation of T cell response and bacterial clearance in human volunteers challenged with Helicobacter pylori revealed by randomised controlled vaccination with Ty21a-based Salmonella vaccines. Gut 57, 1065–1072 (2008).
  232. Zeng, M. et al. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1457–1464 (2015).
  233. Graham, D. Y. et al. Challenge model for Helicobacter pylori infection in human volunteers. Gut 53, 1235–1243 (2004).
  234. Phase 1a/b Study on Safety of IMX101 in H. Pylori-negative and H. Pylori-infected Healthy Volunteers – Full Text View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT03270800. (Accessed: 31st July 2018)
  235. Herrera, V. & Parsonnet, J. Helicobacter pylori and gastric adenocarcinoma. 15, 971–6 (2009).
  236. Cheung, K. S. et al. Long-term proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: a population-based study. Gut 67, 28–35 (2018).
  237. Wan, Q.-Y., Wu, X.-T., Li, N., Du, L. & Zhou, Y. Long-term proton pump inhibitors use and risk of gastric cancer: a meta-analysis of 926 386 participants. Gut gutjnl-2018-316416 (2018). doi:10.1136/gutjnl-2018-316416
  238. Rupnow, M. F. T., Chang, A. H., Shachter, R. D., Owens, D. K. & Parsonnet, J. Cost‐Effectiveness of a Potential Prophylactic Helicobacter pylori Vaccine in the United States. J. Infect. Dis. 200, 1311–1317 (2009).
  239. Alkim, H., Koksal, A. R., Boga, S., Sen, I. & Alkim, C. Role of Bismuth in the Eradication of Helicobacter pylori. Am. J. Ther. 24, e751–e757 (2017).
  240. Venerito, M., Krieger, T., Ecker, T., Leandro, G. & Malfertheiner, P. E-Mail Meta-Analysis of Bismuth Quadruple Therapy versus Clarithromycin Triple Therapy for Empiric Primary Treatment of Helicobacter pylori Infection. Digestion 88, 33–45 (2013).
  241. Alba, C., Blanco, A. & Alarcón, T. Antibiotic resistance in Helicobacter pylori. Curr. Opin. Infect. Dis. 30, 489–497 (2017).
  242. Clinical features, diagnosis, and treatment of Klebsiella pneumoniae infection – UpToDate. Available at: https://www.uptodate.com/contents/clinical-features-diagnosis-and-treatment-of-klebsiella-pneumoniae-infection. (Accessed: 7th August 2018)
  243. CDC – Centers for Disease Control and. Klebsiella pneumoniae in Healthcare Settings | HAI. Available at: https://www.cdc.gov/hai/organisms/klebsiella/klebsiella.html. (Accessed: 7th August 2018)
  244. ECDC. Healthcare-associated infections acquired in intensive care units – Annual Epidemiological Report for 2015.
  245. Meatherall, B. L., Gregson, D., Ross, T., Pitout, J. D. D. & Laupland, K. B. Incidence, Risk Factors, and Outcomes of Klebsiella pneumoniae Bacteremia. Am. J. Med. 122, 866–873 (2009).
  246. Gupta, K. et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 52, e103-20 (2011).
  247. van Duin, D. & Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 8, 460–469 (2017).
  248. Paterson, D. L. et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann. Intern. Med. 140, 26–32 (2004).
  249. Morrill, H. J., Pogue, J. M., Kaye, K. S. & LaPlante, K. L. Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections. Open forum Infect. Dis. 2, ofv050 (2015).
  250. Lundberg, U., Senn, B. M., Schüler, W., Meinke, A. & Hanner, M. Identification and characterization of antigens as vaccine candidates against Klebsiella pneumoniae. Hum. Vaccin. Immunother. 9, 497–505 (2013).
  251. Follador, R. et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb. Genomics 2, e000073 (2016).
  252. Lavender, H., Jagnow, J. J. & Clegg, S. Klebsiella pneumoniae type 3 fimbria-mediated immunity to infection in the murine model of respiratory disease. Int. J. Med. Microbiol. 295, 153–159 (2005).
  253. Fung, C.-P. et al. Immune response and pathophysiological features of Klebsiella pneumoniae liver abscesses in an animal model. Lab. Investig. 91, 1029–1039 (2011).
  254. Benincasa, M. et al. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides. Microorganisms 4, (2016).
  255. Pletzer, D., Mansour, S. C., Wuerth, K., Rahanjam, N. & Hancock, R. E. W. New Mouse Model for Chronic Infections by Gram-Negative Bacteria Enabling the Study of Anti-Infective Efficacy and Host-Microbe Interactions. MBio 8, e00140-17 (2017).
  256. TB is now the World’s Leading Infectious Killer | TB Alliance. Available at: https://www.tballiance.org/news/tb-now-worlds-leading-infectious-killer. (Accessed: 24th July 2018)
  257. Tuberculosis is now the world’s deadliest infectious disease – KNCV. Available at: https://www.kncvtbc.org/en/2015/10/28/tuberculose-nu-dodelijkste-infectieziekte-wereldwijd/. (Accessed: 24th July 2018)
  258. Roy, A. et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 349, g4643 (2014).
  259. Mangtani, P. et al. Protection by BCG Vaccine Against Tuberculosis: A Systematic Review of Randomized Controlled Trials. Clin. Infect. Dis. 58, 470–480 (2014).
  260. Tuberculosis. Available at: http://textbookofbacteriology.net/tuberculosis.html. (Accessed: 25th July 2018)
  261. Lee, J. Y. Diagnosis and treatment of extrapulmonary tuberculosis. Tuberc. Respir. Dis. (Seoul). 78, 47–55 (2015).
  262. CDC – Centers for Disease Control and. TB Risk Factors. https://www.cdc.gov/tb/topic/basics/risk.htm. (Accessed: 30th July 2018)
  263. USAID. Intersecting Epidemics: An Overview of the Causes of Maternal Death and Infectious Diseases WHERE ARE MOTHERS DYING? REGIONAL BURDENS OF DISEASE. 2, (2014).
  264. Gamez-Gonzalez, L. B., Hamada, H., Llamas-Guillen, B. A., Ruiz-Fernandez, M. & Yamazaki-Nakashimada, M. BCG and Kawasaki disease in Mexico and Japan. Hum. Vaccin. Immunother. 13, 1091–1093 (2017).
  265. WHO. WHO Global tuberculosis report 2017. World Health Organization Press (2017). doi:ISBN 978 92 4 156539 4
  266. TB in Children | Kids, getting, diagnosing & preventing TB. Available at: https://www.tbfacts.org/tb-children/. (Accessed: 23rd July 2018)
  267. Tuberculosis – Diagnosis and treatment – Mayo Clinic. Available at: https://www.mayoclinic.org/diseases-conditions/tuberculosis/diagnosis-treatment/drc-20351256. (Accessed: 23rd July 2018)
  268. WHO. WHO | Tuberculosis vaccine development. WHO (2018).
  269. Huang, L. & Russell, D. G. Protective immunity against tuberculosis: what does it look like and how do we find it? Curr. Opin. Immunol. 48, 44–50 (2017).
  270. Urdahl, K. Understanding the Immune Response to M. tuberculosis. Nature Education (2015). Available at: https://www.nature.com/scitable/topicpage/understanding-the-immune-response-to-m-tuberculosis-132624401.
  271. Houben, R. M. G. J. & Dodd, P. J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLOS Med. 13, e1002152 (2016).
  272. Karp, C. L., Wilson, C. B. & Stuart, L. M. Tuberculosis vaccines: barriers and prospects on the quest for a transformative tool. Immunol. Rev. 264, 363–381 (2015).
  273. Zhan, L., Tang, J., Sun, M. & Qin, C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front. Microbiol. 8, 717 (2017).
  274. Minassian, A. M. et al. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J. Infect. Dis. 205, 1035–42 (2012).
  275. Croucher, K., Kershaw, F. & Rick, T. Challenges in Conducting Tuberculosis Clinical Trials in Developing Countries: Lessons Learned. J. Clin. Stud. 5, (2013).
  276. Kaufmann, S. H. E., Weiner, J. & Maertzdorf, J. Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers. Expert Rev. Vaccines 16, 845–853 (2017).
  277. Viewpoint – Is the universal BCG vaccination necessary? | GPonline. Available at: https://www.gponline.com/viewpoint-universal-bcg-vaccination-necessary/infections-and-infestations/immunisation/article/906355. (Accessed: 20th July 2018)
  278. G-FINDER – Public Search Tool. Available at: https://gfinder.policycuresresearch.org/PublicSearchTool/search. (Accessed: 6th August 2018)
  279. Gonorrhea. Available at: https://emedicine.medscape.com/article/218059-overview (Accessed: 21st September 2018)
  280. Jerse, A. E., Bash, M. C. & Russell, M. W. Vaccines against gonorrhea: Current status and future challenges. Vaccine 32, 1579–1587 (2014).
  281. Miller, K. E. Diagnosis and Treatment of Neisseria gonorrhoeae Infections. Am. Fam. Physician 73, (2006).
  282. Vincent, L. R. & Jerse, A. E. Biological feasibility and importance of a gonorrhea vaccine for global public health. Vaccine (2018). doi:10.1016/j.vaccine.2018.02.081
  283. Plummer, F. A. et al. Antibodies to opacity proteins (Opa) correlate with a reduced risk of gonococcal salpingitis. J. Clin. Invest. 93, 1748–1755 (1994).
  284. Fox, K. K. et al. Longitudinal evaluation of serovar-specific immunity to Neisseria gonorrhoeae. Am. J. Epidemiol. 149, 353–8 (1999).
  285. Petousis-Harris, H. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390, 1603–1610 (2017).
  286. ECDC: first detected cases of extensively drug-resistant gonorrhoea threaten future treatment. Available at: https://ecdc.europa.eu/en/news-events/ecdc-first-detected-cases-extensively-drug-resistant-gonorrhoea-threaten-future (Accessed: 21st September 2018)
  287. Mlisana, K. et al. Symptomatic Vaginal Discharge Is a Poor Predictor of Sexually Transmitted Infections and Genital Tract Inflammation in High-Risk Women in South Africa. J. Infect. Dis. 206, 6–14 (2012).
  288. Mullick, S., Watson-Jones, D. & Beksinska, M. Sexually transmitted infections in pregnancy: prevalence, impact on pregnancy outcomes, and approach to treatment in developing countries. Sex. Transm. Infect. 81, 294–302
  289. Treatment of uncomplicated Neisseria gonorrhoeae infections – UpToDate.
  290. Plummer, F. A. et al. Epidemiologic evidence for the development of serovar-specific immunity after gonococcal infection. J. Clin. Invest. 83, 1472–6 (1989).
  291. Broutet, N., Fruth, U., Deal, C., Gottlieb, S. L. & Rees, H. Vaccines against sexually transmitted infections : The way forward ଝ. Vaccine 32, 1630–1637 (2014).
  292. Fruth, U., Broutet, N., Deal, C., Dodet, B. & Meheus, A. Vaccines for sexually transmitted infections : Past , present and future. Vaccine 32, 1525–1526 (2014).
  293. WHO. Scientists warn that antibiotic-resistant gonorrhea is on the rise. (2017).
  294. The Value of Vaccines in the Avoidance of Antimicrobial Resistance Royal Society.
  295. CDC. https://www.cdc.gov/std/gonorrhea/stdfact-gonorrhea-detailed.htm.
  296. Epidemiology, microbiology, and pathogenesis of Pseudomonas aeruginosa infection – UpToDate. (2018). Available at: https://www.uptodate.com/contents/epidemiology-microbiology-and-pathogenesis-of-pseudomonas-aeruginosa-infection. (Accessed: 25th July 2018)
  297. CDC – Centers for Disease Control and. Pseudomonas aeruginosa in Healthcare Settings | HAI | CDC. (2018). Available at: https://www.cdc.gov/hai/organisms/pseudomonas.html. (Accessed: 25th July 2018)
  298. Clifton, I. J. & Peckham, D. G. Defining routes of airborne transmission of Pseudomonas aeruginosa in people with cystic fibrosis. Expert Rev. Respir. Med. 4, 519–529 (2010).
  299. Treepong, P. et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266 (2018).
  300. Elborn, J. S. Cystic fibrosis. Lancet 388, 2519–2531 (2016).
  301. Angrill, J. et al. Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors. Thorax 57, 15–9 (2002).
  302. Engler, K. et al. Colonisation with Pseudomonas aeruginosa and antibiotic resistance patterns in COPD patients. Swiss Med. Wkly. 142, w13509 (2012).
  303. Murray, T. S., Egan, M. & Kazmierczak, B. I. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19, 83–88 (2007).
  304. Pseudomonas aeruginosa infections of the eye, ear, urinary tract, gastrointestinal tract, and central nervous system – UpToDate. Available at: https://www.uptodate.com/contents/pseudomonas-aeruginosa-infections-of-the-eye-ear-urinary-tract-gastrointestinal-tract-and-central-nervous-system. (Accessed: 25th July 2018)
  305. Pseudomonas aeruginosa pneumonia – UpToDate. Available at: https://www.uptodate.com/contents/pseudomonas-aeruginosa-pneumonia?topicRef=3142&source=see_link. (Accessed: 25th July 2018)
  306. Gellatly, S. L. & Hancock, R. E. W. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173 (2013).
  307. Lelong, E. et al. Evolution of Pseudomonas aeruginosa virulence in infected patients revealed in a Dictyostelium discoideum host model. Clin. Microbiol. Infect. 17, 1415–1420 (2011).
  308. Yordanov, D. & Strateva, T. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J. Med. Microbiol. 58, 1133–1148 (2009).
  309. Yordanov, D. & Strateva, T. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J. Med. Microbiol. 58, 1133–1148 (2009).
  310. Principles of antimicrobial therapy of Pseudomonas aeruginosa infections – UpToDate. Available at: https://www.uptodate.com/contents/principles-of-antimicrobial-therapy-of-pseudomonas-aeruginosa-infections. (Accessed: 25th July 2018)
  311. Lavoie, E. G., Wangdi, T. & Kazmierczak, B. I. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect. 13, 1133–45 (2011).
  312. Cigana, C. et al. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Sci. Rep. 6, 21465 (2016).
  313. Pitt, T. L. Cross infection of cystic fibrosis patients with Pseudomonas aeruginosa. Thorax 57, 921 (2002).
  314. Gellatly, S. L. & Hancock, R. E. W. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173 (2013).
  315. Lelong, E. et al. Evolution of Pseudomonas aeruginosa virulence in infected patients revealed in a Dictyostelium discoideum host model. Clin. Microbiol. Infect. 17, 1415–1420 (2011).
  316. Winstanley, C., O’Brien, S. & Brockhurst, M. A. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. 24, 327–337 (2016).
  317. Goldberg, J. B. & Pier, G. B. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends Microbiol. 8, 514–20 (2000).
  318. Priebe, G. P. & Goldberg, J. B. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev. Vaccines 13, 507–519 (2014).
  319. Bielen, K. et al. Animal models of hospital-acquired pneumonia: current practices and future perspectives. Ann. Transl. Med. 5, 132 (2017).
  320. Rello, J. et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit. Care 21, 22 (2017).
  321. Gagneux-Brunon, A., Lucht, F., Launay, O., Berthelot, P. & Botelho-Nevers, E. Vaccines for healthcare-associated infections: present, future, and expectations. Expert Rev. Vaccines 17, 421–433 (2018).
  322. Teresa Aguado, M. et al. Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22–23 March 2017. Vaccine 36, 921–931 (2018).
  323. Lavelle, G. M., White, M. M., Browne, N., McElvaney, N. G. & Reeves, E. P. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences. Biomed Res. Int. 2016, 1–14 (2016).
  324. About Cystic Fibrosis | CF Foundation. Available at: https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/. (Accessed: 25th July 2018)
  325. Cystic fibrosis: Company urged to lower cost of life-changing drug – BBC News. Available at: https://www.bbc.co.uk/news/uk-43849586. (Accessed: 25th July 2018)
  326. Polverino, E., Cacheris, W., Spencer, C. & Operschall, E. Global burden of non-cystic fibrosis bronchiectasis: A simple epidemiological analysis. Eur. Respir. J. 40, (2012).
  327. Redondo, M., Keyt, H., Dhar, R. & Chalmers, J. D. Global impact of bronchiectasis and cystic fibrosis. Breathe (Sheffield, England) 12, 222–235 (2016).
  328. Fisher, J. T., Zhang, Y. & Engelhardt, J. F. Comparative Biology of Cystic Fibrosis Animal Models. in Methods in molecular biology (Clifton, N.J.) 742, 311–334 (2011).
  329. Ward, C., Rydell-Törmänen, K., Westergren-Thorsson, G., Eriksson, L. T. & Walters, H. Infection and remodelling: a 21st century model of bronchiectasis? Eur. Respir. J. 38, 758–60 (2011).
  330. Chalmers, J. D., Loebinger, M. & Aliberti, S. Challenges in the development of new therapies for bronchiectasis. Expert Opin. Pharmacother. 16, 833–850 (2015).
  331. Tennant, S. M., Maclennan, C. A., Simon, R., Martin, L. B. & Khan, M. I. Nontyphoidal salmonella disease : Current status of vaccine research and development. Vaccine 34, 2907–2910 (2016).
  332. Morpeth, S. C., Ramadhani, H. O. & Crump, J. A. Invasive non-Typhi Salmonella disease in Africa. Clin. Infect. Dis. 49, 606–11 (2009).
  333. Kingsley, R. A. et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. (2009). doi:10.1101/gr.091017.109
  334. CDC – Centers for Disease Control and. Signs & Symptoms | Multistate Outbreak of Salmonella I 4,[5],12:b:- Infections Linked to Kratom | February 2018 | Salmonella | CDC. Available at: https://www.cdc.gov/salmonella/kratom-02-18/signs-symptoms.html. (Accessed: 28th July 2018)
  335. Mayoclinic. Typhoid fever. Available at: https://www.mayoclinic.org/diseases-conditions/typhoid-fever/symptoms-causes/syc-20378661.
  336. WHO. Salmonella (non-typhoidal). Available at: http://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal). (Accessed: 31st July 2018)
  337. Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S. & Gordon, M. A. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet (London, England) 379, 2489–2499 (2012).
  338. Nontyphoidal Salmonella bacteremia – UpToDate. Available at: https://www.uptodate.com/contents/nontyphoidal-salmonella-bacteremia#H9. (Accessed: 30th July 2018)
  339. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet. Infect. Dis. 18, 318–327 (2018).
  340. Gibani, M. M., Jin, C., Darton, T. C. & Pollard, A. J. Control of Invasive Salmonella Disease in Africa: Is There a Role for Human Challenge Models? Clin. Infect. Dis. 61, S266–S271 (2015).
  341. Leslie, T. et al. Overdiagnosis and mistreatment of malaria among febrile patients at primary healthcare level in Afghanistan: observational study. BMJ 345, e4389–e4389 (2012).
  342. Martin, L. B. et al. Status of paratyphoid fever vaccine research and development. Vaccine 34, 2900–2902 (2016).
  343. Paratyphoid Fever | Encyclopedia.com. Available at: https://www.encyclopedia.com/medicine/diseases-and-conditions/pathology/paratyphoid-fever. (Accessed: 28th July 2018)
  344. Khosla, S. N., Jain, N. & Khosla, A. Gastric acid secretion in typhoid fever. Postgrad. Med. J. 69, 121–3 (1993).
  345. Bhutta, Z. A. Typhoid Fever. Infect. Dis. Clin. Pract. 14, 266–272 (2006).
  346. Treatment and prevention of enteric (typhoid and paratyphoid) fever – UpToDate. Available at: https://www.uptodate.com/contents/treatment-and-prevention-of-enteric-typhoid-and-paratyphoid-fever?search=paratyphoid fever&source=search_result&selectedTitle=2~88&usage_type=default&display_rank=2. (Accessed: 27th July 2018)
  347. Zuckerman, J. N., Hatz, C. & Kantele, A. Expert Review of Vaccines Review of current typhoid fever vaccines , cross- protection against paratyphoid fever , and the European guidelines. Expert Rev. Vaccines 16, 1029–1043 (2017).
  348. Capeding, M. R. et al. Safety and immunogenicity of a Vi-DT typhoid conjugate vaccine: Phase I trial in Healthy Filipino adults and children. Vaccine 36, 3794–3801 (2018).
  349. WHO. Status of Vaccine Research and Development for Paratyphoid Fever Prepared for WHO PD-VAC. (2014).
  350. Higginson, E. E., Simon, R. & Tennant, S. M. Animal Models for Salmonellosis: Applications in Vaccine Research. Clin. Vaccine Immunol. 23, 746–56 (2016).
  351. McCullagh, D. et al. Understanding paratyphoid infection: study protocol for the development of a human model of Salmonella enterica serovar Paratyphi A challenge in healthy adult volunteers. BMJ Open 5, e007481–e007481 (2015).
  352. World Health Organization. Typhoid vaccines: WHO position paper, March 2018 – Recommendations. Vaccine (2018). doi:10.1016/j.vaccine.2018.04.022
  353. Enteric fevers: migrant health guide – GOV.UK. Available at: https://www.gov.uk/guidance/enteric-fevers-migrant-health-guide. (Accessed: 2nd August 2018)
  354. CDC – Centers for Disease Control and. Typhoid Fever | Disease Directory | Travelers’ Health | CDC. Available at: https://wwwnc.cdc.gov/travel/diseases/typhoid. (Accessed: 2nd August 2018)
  355. Klemm, E. J. et al. Emergence of an extensively drug-resistant Salmonella enterica serovar typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio (2018). doi:10.1128/mBio.00105-18
  356. Jin, C. et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. Lancet 390, 2472–2480 (2017).
  357. Bharat Biotech; Gates Foundation; The Clinton Healt Access initiative; Oxford University; PATH. Typbar TCV® from Bharat Biotech, World’s First Typhoid Conjugate Vaccine Prequalified by WHO. 2018 Available at: http://www.who.int/medicines/news/2017/Bharat-Biotech-TypbarTCV-WHO-PQ-Press-Release-Global-Final.pdf.
  358. Mohan, V. K. et al. Safety and Immunogenicity of a Vi Polysaccharide–Tetanus Toxoid Conjugate Vaccine (Typbar-TCV) in Healthy Infants, Children, and Adults in Typhoid Endemic Areas: A Multicenter, 2-Cohort, Open-Label, Double-Blind, Randomized Controlled Phase 3 Study. Clin. Infect. Dis. 61, 393–402 (2015).
  359. Mohan, V. K. et al. Safety and Immunogenicity of a Vi Polysaccharide–Tetanus Toxoid Conjugate Vaccine (Typbar-TCV) in Healthy Infants, Children, and Adults in Typhoid Endemic Areas: A Multicenter, 2-Cohort, Open-Label, Double-Blind, Randomized Controlled Phase 3 Study. Clin. Infect. Dis. 61, 393–402 (2015).
  360. Vaccination | Typhoid Fever | CDC. Available at: https://www.cdc.gov/typhoid-fever/typhoid-vaccination.html. (Accessed: 25th July 2018)
  361. Typhoid fever – NHS.UK. Available at: https://www.nhs.uk/conditions/typhoid-fever/. (Accessed: 2nd August 2018)
  362. GAVI Alliance Approves $85 Million for Typhoid Conjugate Vaccines | News | PND. Available at: https://philanthropynewsdigest.org/news/gavi-alliance-approves-85-million-for-typhoid-conjugate-vaccines. (Accessed: 2nd August 2018)
  363. Mani, S., Wierzba, T. & Walker, R. I. Status of vaccine research and development for Shigella. Vaccine 34, 2887–2894 (2016).
  364. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).
  365. Questions & Answers | Shigella – Shigellosis | CDC. Available at: https://www.cdc.gov/shigella/general-information.html. (Accessed: 23rd July 2018)
  366. Shigellosis – Chapter 3 – 2018 Yellow Book | Travelers’ Health | CDC. Available at: https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/shigellosis. (Accessed: 23rd July 2018)
  367. Sources of Infection & Risk Factors | Shigella – Shigellosis | CDC. Available at: https://www.cdc.gov/shigella/infection-sources.html. (Accessed: 25th July 2018)
  368. Kotloff, K. L. et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77, 651–66 (1999).
  369. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).
  370. Shigella infection: Treatment and prevention in adults – UpToDate. Available at: https://www.uptodate.com/contents/shigella-infection-treatment-and-prevention-in-adults. (Accessed: 25th July 2018)
  371. Rahman, M. et al. Emergence of Extensively Drug-resistant Shigella sonnei in Bangladesh. Immunol. Infect. Dis. 5, 1–9 (2017).
  372. Bodhidatta, L. et al. Establishment of a Shigella sonnei human challenge model in Thailand. Vaccine 30, 7040–5 (2012).
  373. Black, R. E. et al. Prevention of shigellosis by a Salmonella typhi-Shigella sonnei bivalent vaccine. J. Infect. Dis. 155, 1260–5 (1987).
  374. Herrington, D. A. et al. Studies in volunteers to evaluate candidate Shigella vaccines: further experience with a bivalent Salmonella typhi-Shigella sonnei vaccine and protection conferred by previous Shigella sonnei disease. Vaccine 8, 353–7 (1990).
  375. Munoz, C. et al. Characteristics of Shigella sonnei infection of volunteers: signs, symptoms, immune responses, changes in selected cytokines and acute-phase substances. Am. J. Trop. Med. Hyg. 53, 47–54 (1995).
  376. Kaslow, D. C. Presentation: The concept and status of Full Public Health Value Propositions (FPHVP) for Vaccines. (2018).
  377. Typhoid fever – Vaccination – NHS.UK. Available at: https://www.nhs.uk/conditions/typhoid-fever/vaccination/. (Accessed: 25th July 2018)
  378. Lee, E. C., Viboud, C., Simonsen, L., Khan, F. & Bansal, S. Detecting signals of seasonal influenza severity through age dynamics. BMC Infect. Dis. 15, 587 (2015).
  379. Baorto, E. & Baorto, D. Staphylococcus Aureus Infection Treatment Management. Medscape (2017). Available at: https://emedicine.medscape.com/article/971358-treatment. (Accessed: 17th July 2018)
  380. Pray, L. Antibiotic Resistance, Mutation Rates and MRSA. Nat. Educ. 1, (2008).
  381. Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 28, 603–661 (2015).
  382. Epidemiology of Staphylococcus aureus bacteremia in adults – UpToDate. Available at: https://www.uptodate.com/contents/epidemiology-of-staphylococcus-aureus-bacteremia-in-adults. (Accessed: 17th July 2018)
  383. Schaumburg, F., Alabi, A. S., Peters, G. & Becker, K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. 20, 589–596 (2014).
  384. Lee, B. Y. et al. Staphylococcus aureus vaccine for orthopedic patients : An economic model and analysis. Vaccine 28, 2465–2471 (2010).
  385. Epidemiology, risk factors, and microbiology of infective endocarditis – UpToDate. Available at: https://www.uptodate.com/contents/epidemiology-risk-factors-and-microbiology-of-infective-endocarditis. (Accessed: 26th July 2018)
  386. Giersing, B. K., Dastgheyb, S. S., Modjarrad, K. & Moorthy, V. Status of vaccine research and development of vaccines for Staphylococcus aureus ଝ. Vaccine 34, 2962–2966 (2016).
  387. FDA. Vaccines and Related Biological Products Advisory Committee Meeting Clinical Development Plan for Pfizer’s Investigational Staphylococcus aureus Vaccine (SA4Ag) Intended for Pre-Surgical Prophylaxis in Elective Orthopedic Surgical Po. (2017).
  388. Hiramatsu, K. et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40, 135–6 (1997).
  389. Liu, C. & Chambers, H. F. Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods. Antimicrob. Agents Chemother. 47, 3040–5 (2003).
  390. David, M. Z. & Daum, R. S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23, 616–87 (2010).
  391. Staphylococcus aureus bacteremia with reduced susceptibility to vancomycin – UpToDate. Available at: https://www.uptodate.com/contents/staphylococcus-aureus-bacteremia-with-reduced-susceptibility-to-vancomycin. (Accessed: 17th July 2018)
  392. Marty, F. M. et al. Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. J. Clin. Microbiol. 44, 595–7 (2006).
  393. Skiest, D. J. Treatment failure resulting from resistance of Staphylococcus aureus to daptomycin. J. Clin. Microbiol. 44, 655–6 (2006).
  394. Fowler, V. G. et al. Effect of an Investigational Vaccine for Preventing Staphylococcus aureus Infections After Cardiothoracic Surgery. JAMA 309, 1368 (2013).
  395. Six reasons we lack an S. aureus vaccine. Available at: https://www.healio.com/pediatrics/mrsa/news/print/infectious-diseases-in-children/%7Bf3140a44-b05d-4963-800b-a1347980459a%7D/six-reasons-we-lack-an-s-aureus-vaccine. (Accessed: 31st July 2018)
  396. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).
  397. Montgomery, C. P. et al. Protective immunity against recurrent Staphylococcus aureus skin infection requires antibody and interleukin-17A. Infect. Immun. 82, 2125–34 (2014).
  398. Brown, A. F., Leech, J. M., Rogers, T. R. & McLoughlin, R. M. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Front. Immunol. 4, 507 (2014).
  399. Parker, D. Humanized Mouse Models of Staphylococcus aureus Infection. Front. Immunol. 8, 512 (2017).
  400. McNeely, T. B. et al. Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: an analysis of possible contributing host factors. Hum. Vaccin. Immunother. 10, 3513–6 (2014).
  401. Frenck, R. W. et al. Safety, tolerability, and immunogenicity of a 4-antigen Staphylococcus aureus vaccine (SA4Ag): Results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine 35, 375–384 (2017).
  402. NovaDigm initiates Phase IIa trial of NDV-3A for S. aureus – Drug Development Technology. Available at: https://www.drugdevelopment-technology.com/news/novadigm-initiates-phase-iia-trial-ndv-3a-s-aureus/. (Accessed: 22nd July 2018)
  403. Sanicas, M. Can we find a vaccine for Staph aureus? | World Economic Forum. World Economic Forum (2016). Available at: https://www.weforum.org/agenda/2016/02/can-we-find-a-vaccine-for-staph-aureus/. (Accessed: 17th July 2018)
  404. Pneumococcal vaccine support – Gavi, the Vaccine Alliance. Available at: https://www.gavi.org/support/nvs/pneumococcal/. (Accessed: 25th July 2018)
  405. van der Linden, M., Falkenhorst, G., Perniciaro, S., Fitzner, C. & Imöhl, M. Effectiveness of Pneumococcal Conjugate Vaccines (PCV7 and PCV13) against Invasive Pneumococcal Disease among Children under Two Years of Age in Germany. PLoS One 11, e0161257 (2016).
  406. Bonten, M. J. M. et al. Polysaccharide Conjugate Vaccine against Pneumococcal Pneumonia in Adults. N. Engl. J. Med. 372, 1114–1125 (2015).
  407. Esposito, S. & Principi, N. Impacts of the 13-Valent Pneumococcal Conjugate Vaccine in Children. J. Immunol. Res. 1–6 (2015). doi:10.1155/2015/591580
  408. Farooqui, H. H., Zodpey, S., Chokshi, M. & Thacker, N. Estimates on state-specific Pneumococcal Conjugate Vaccines (PCV) coverage in the private sector in the year 2012: Evidence from PCV utilization data. Indian J. Public Health 60, 145–9 (2016).
  409. Boulton, M. L., Ravi, N. S., Sun, X., Huang, Z. & Wagner, A. L. Trends in childhood pneumococcal vaccine coverage in Shanghai, China, 2005–2011: a retrospective cohort study. BMC Public Health 16, 109 (2015).
  410. Gavi. Pneumococcal Vaccine Supply and Procurement Roadmap. (2017). doi:10.1016/S1068-607X(00)00070-6
  411. Serum Institute Of India. Available at: https://www.seruminstitute.com/product_horizon.php. (Accessed: 25th July 2018)
  412. Regev‐Yochay, G. et al. Nasopharyngeal Carriage of Streptococcus pneumoniae by Adults and Children in Community and Family Settings. Clin. Infect. Dis. 38, 632–639 (2004).
  413. Pneumococcal pneumonia in children – UpToDate. Available at: https://www.uptodate.com/contents/pneumococcal-pneumonia-in-children. (Accessed: 25th July 2018)
  414. Hill, P. C. et al. Nasopharyngeal Carriage of Streptococcus pneumoniae in Gambian Villagers. Pneumococcal Carriage in Gambians • CID (2006).
  415. Gray, B. M., Converse, G. M. & Dillon, H. C. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J. Infect. Dis. 142, 923–33 (1980).
  416. Turner, P. et al. A Longitudinal Study of Streptococcus pneumoniae Carriage in a Cohort of Infants and Their Mothers on the Thailand-Myanmar Border. PLoS One 7, e38271 (2012).
  417. Wahl, B. et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Global Health 697):e744-e757 (2018). doi:10.1016/S2214-109X(18)30247-X
  418. Ngo, C. C., Massa, H. M., Thornton, R. B. & Cripps, A. W. Predominant Bacteria Detected from the Middle Ear Fluid of Children Experiencing Otitis Media: A Systematic Review. PLoS One 11, (2016).
  419. Berical, A. C., Harris, D., Dela Cruz, C. S. & Possick, J. D. Pneumococcal Vaccination Strategies. An Update and Perspective. Ann. Am. Thorac. Soc. 13, 933–44 (2016).
  420. Pneumococcal pneumonia in adults – UpToDate. Available at: https://www.uptodate.com/contents/pneumococcal-pneumonia-in-adults. (Accessed: 8th August 2018)
  421. Resistance of Streptococcus pneumoniae to beta-lactam antibiotics – UpToDate. Available at: https://www.uptodate.com/contents/resistance-of-streptococcus-pneumoniae-to-beta-lactam-antibiotics. (Accessed: 25th July 2018)
  422. Normark, B. H. et al. Clinical Isolates of Streptococcus pneumoniae That Exhibit Tolerance of Vancomycin. Clin. Infect. Dis. 32, 552–558 (2001).
  423. Domínguez, Á. et al. Effectiveness of the 13-valent pneumococcal conjugate vaccine in preventing invasive pneumococcal disease in children aged 7-59 months. A matched case-control study. PLoS One 12, e0183191 (2017).
  424. Su, L.-H. et al. Evolving pneumococcal serotypes and sequence types in relation to high antibiotic stress and conditional pneumococcal immunization. Sci. Rep. 5, 15843 (2015).
  425. Wilson, R. Natural adaptive immunity to Streptococcus pneumoniae lung infection. Dr. thesis, UCL (University Coll. London).  (2014).
  426. Wilson, R. et al. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunol. 8, 627–639 (2015).
  427. Wilson, R. et al. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens. PLoS Pathog. 13, (2017).
  428. Daniels, C. C., Rogers, P. D. & Shelton, C. M. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens. J. Pediatr. Pharmacol. Ther. 21, 27–35 (2016).
  429. Bröker, M., Berti, F., Schneider, J. & Vojtek, I. Polysaccharide conjugate vaccine protein carriers as a “neglected valency” – Potential and limitations. Vaccine 35, 3286–3294 (2017).
  430. Bogaert, D., Hermans, P. W. ., Adrian, P. ., Rümke, H. . & de Groot, R. Pneumococcal vaccines: an update on current strategies. Vaccine 22, 2209–2220 (2004).
  431. Chiavolini, D., Pozzi, G. & Ricci, S. Animal Models of Streptococcus pneumoniae Disease. Clin. Microbiol. Rev. 21, 666–685 (2008).
  432. Giebink, G. S. Otitis Media: The Chinchilla Model. Microb. Drug Resist. 5, 57–72 (1999).
  433. Parra, A. et al. Optimal dose of amoxicillin in treatment of otitis media caused by a penicillin-resistant pneumococcus strain in the gerbil model. Antimicrob. Agents Chemother. 46, 859–62 (2002).
  434. van der Ven, L. T. et al. A new rat model of otitis media caused by Streptococcus pneumoniae: conditions and application in immunization protocols. Infect. Immun. 67, 6098–103 (1999).
  435. Cunningham, A. L. et al. Vaccine development: From concept to early clinical testing. Vaccine 34, 6655–6664 (2016).
  436. Collins, A. M. et al. First Human Challenge Testing of a Pneumococcal Vaccine. Double-Blind Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 192, 853–858 (2015).
  437. Voysey, M. et al. Serotype-Specific Correlates of Protection for Pneumococcal Carriage: An Analysis of Immunity in 19 Countries. Clin. Infect. Dis. 66, 913–920 (2018).
  438. Andrews, N. J. et al. Serotype-specifi c eff ectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine : a postlicensure indirect cohort study. Lancet Infect. Dis. 14, 839–846 (2014).
  439. WHO. WHO position paper on pneumococcal vaccines 2012. (2012). Available at: http://www.who.int/immunization/position_papers/PP_pneumococcal_April_2012_summary.pdf (Accessed: 21st September 2018).
  440. Gavi. Advance market commitment for pneumococcal vaccines. Annual Report. (2016). Available at: https://www.gavi.org/library/gavi…/amc/2016-pneumococcal-amc-annual-report/ (Accessed: 21st September 2018).
  441. Pneumococcal AMC – Gavi, the Vaccine Alliance. Available at: https://www.gavi.org/funding/pneumococcal-amc/. (Accessed: 25th July 2018)
  442. Wang, Y., Li, J., Wang, Y., Gu, W. & Zhu, F. Effectiveness and practical uses of 23-valent pneumococcal polysaccharide vaccine in healthy and special populations. Hum. Vaccin. Immunother. 14, 1003–1012 (2018).
  443. Factors associated with pneumococcal conjugate and rotavirus vaccines uptake among infants: Evidence from the Africa Centre. (2013).
  444. Global Pneumococcal Vaccine Market – Forecasts from 2018 to 2023. Available at: https://www.researchandmarkets.com/reports/4518596/global-pneumococcal-vaccine-market-forecasts (Accessed: 21st September 2018).